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Abstract

We describe the application of efficient numerical recursive filters to the task of convolving a
spatial distribution of ‘forcing’ terms with a quasi-Gaussian self-adjoint smoothing kernel. In
the context of variational analysis, this smoothing operation is interpreted to be a either a
covariance function of background error, or a contributing component to a covariance func-
tion of non-Gaussian profile formed by the superposition of a number of such quasi-Gaussian
smoothing operators. A superposition of positively-weighted quasi-Gaussian smoothers enables
a useful range of covariance profiles to be synthesized which, in their idealized univariate and
spatially homogeneous forms, imply power spectra that exhibit tails substantially fatter than
those corresponding to the single Gaussian of approximately equivalent width. As a conse-
quence, these synthetic covariances are more suitable statistical representations of background
error than single Gaussians in the typical situations where a broad dynamical range of scales
contribute significantly to this error.

‘ A further expansion of the potential range of synthetic covariances is achieved by combina-
tions that also involve the negative-Laplacians of the basic component smoothers, thus enabling
the negatively-correlated side-lobes of the covariances typical of some background errors to be

‘more faithfully modelled. The methods we describe are not restricted to the production of
spatially-homogeneous covariances; by spatially modulating either the superposition weights or
the digital filtering coefficients themselves, it becomes possible to synthesize operators consis-
tent with the properties of covariances which display adaptive variations of amplitude, scale and
profile shape across the geographical domain. This is clearly desirable when the background
itself derives from earlier data whose spatial distribution exhibits marked inhomogeneities of
density or quality, and it is probably desirable also in the case of varying synoptic regimes
within the domain.

Among the computational aspects of the recursive filters, we treat the problems of periodic
and nonperiodic boundary conditions and an approach to achieving efficient parallelization.

1. INTRODUCTION

There are many methods available for objectively analyzing the meteorological data required
to initialize a numerical weather prediction model (for example, see Daley 1991). Those meth-
ods based on formal statistical principles (e.g., Gandin 1963, Lorenc 1986, Parrish and Derber
- 1992, Lorenc 1997, Courtier et al. 1998), which permit proper account to be taken of multi-
variate aspects of the problem, have now largely superseded the overtly empirical methods of
‘successive corrections’ (Bergthorssen and Dods 1955, Cressman, 1959; Barnes, 1964). Never-
theless, for specialized applications, the empirical methods continue to enjoy the advantages of
greater computational efficiency and the ability to adapt more flexibly to the typically large
inhomogeneities of density and quality of the available data. While the high efficiency of em-
pirical methods becomes progressively less of a critical factor as available computational power
continues to increase, adaptivity remains a factor of considerable importance in circumstances
where the day-to-day variability of data quality and quantity are hard to predict before-hand,



such as occurs in the processing of satellite sounding data. In this context Hayden and Purser
(1995), following up on the work of Purser and McQuigg (1982), developed a numerically ef-
ficient and spatially adaptive analysis scheme using spatial smoothers. Each spatial smoother
was built up of more basic numerical operators consisting of rather simple recursive filters acting
unidirectionally upon the gridded data residuals.

The numerical efficiency of these basic operators can also be turned to advantage within a
statistical analysis scheme, specifically in the synthesis of the effective covariance-convolution
operators needed by the descent algorithms of the large-scale linear (or, at worst, weakly non-
linear) solvers involved. The Statistical Spectral Interpolation (SSI) of the National Centers for
Environmental Prediction (NCEP) is an example of an analysis scheme in which the spectral
representation of the background error covariance is employed directly (Parrish and Derber
1992). Methods of this type are inherently limited in their ability to deal conveniently with
geographical inhomogeneities. One motivation of the present study was to develop the tool of
recursive filters to allow the operational three-dimensional variational analysis (3DVAR) scheme
to accommodate spatial inhomogeneities in the background covariance. Even inhomogeneous
covariances must preserve the symmetry of self-adjointness upon which the success of many
iterative solution algorithms depend. While this was not a property required by the smoothers
employed in the empirical (nonstatistical) analysis of Hayden and Purser (1995), it can be
engineered without great difficulty, as this paper will demonstrate.

A brief review of the ideas that underlie 3DVAR is given in section 2 in order to clarify the
points at which the recursive filter plays a part. In section 3 we set forth the relevant theory
pertaining to the construction of basic recursive filters capable of being forged into convolution
operators reasonably representing the qualities desired by modelled covariance-convolutions
within an adaptive analysis scheme with a uniform cartesian grid and with homogeneous co-
variances. Like the Gaussian covariances of Derber and Rosati (1989), which are obtained by
multiple iterations of a diffusion operator, the basic recursive filters are crafted to produce
approximately Gaussian smoothing kernels (but in fewer numerical operations than are typi-
cal in the explicit diffusion method). Some of the technicalities discussed in this section are
treated in greater detail in the appendices. Section 4 treats some more general cases where the
grid spacing may vary smoothly (but still assuming that it remains orthogonal) and where the
spatial scale of the covariance function may smoothly vary (but still assuming local isotropy of
the scale parameter). A discussion of the special case of polar grids is provided, with suggested
approaches to overcome the difficulties associated with the polar coordinate singularity. Sec-
tion 5 deals with specific proposals for the construction of non-Gaussian parameterized families
of covariance models based on linear superposition of the the quasi-Gaussian ‘building blocks’
that the recursive filters provide. - One covariance family that we have found to be extremely
convenient to use and beneficial in applications comprises bell-shaped distributions with signif-
icantly fatter tails than the Gaussian. We discuss the efficient construction of approximations
to these fat-tailed distributions that allow a broader dynamical range of scales in the analysis
increments to be assimilated. In the concluding section we touch on the problems of managing
the potential for spatial adaptivity achieved by the techniques presented here. We also offer
some thoughts on the prospects of extending the freedom to provide inhomogeneous but essen-
tially isotropic covariances to more general constructions, available through refinements of the
filtering technique, by which even this restriction of local isotropy may be profitably relaxed.
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2. 3DVAR

In this section we attempt to follow the notation of Ide et al. (1997), writing the abstract
vector representing the atmospheric state as x, with ‘background’ and ‘analysis’ versions of
this indicated by subscripts, that is: x; and x,. The component of error in the background is
denoted ¢;:

Xp =X + €. (2.1)

The observational data are collected into another abstract vector y, whose components are
related to the state vector x through the application of a generalized, possibly nonlinear inter-
polation operator H together with an effective measurement error €:

Yo ="H(x) + €o- | _ (2.2)

The statistical characteristics of the errors ¢, and €, are quite difficult to describe in completé
detail owing to numerous complicating factors. For example, the statistics of these quantities
are not really well described by normal distributions (otherwise there would be no need to pay
special attention to quality control and nonlinear balancing); the error characteristics of the
background are usually dependent upon the geographical location, the season and the synoptic
situation; the observation errors are frequently biased or contain components of mutual corre-
lation that defy simple description. Nevertheless, even a partial accounting for the statistical
behavior of errors, in the form of a relatively simple statistical analysis scheme, can provide
a valuable objective way to make the information from new observations available to a nu-
merical forecasting system. Among the common simplifying assumptions, we normally assume
unbiasedness:

<6b> = ‘O7 7 (2.3)
() = 0. (2.4)

The covariance, R = (ey€l), of observational error is assumed to be diagonal, equivalent (for
normal statistics, at least) to assuming the observational errors are statistically independent.
The corresponding covariance, B = (ebeg), of background error, however, is never assumed to
be diagonal in its representation based on the state-space constructed from the gridded value
components; the characteristically smooth form in space of background errors implies that
neighboring points have errors, in fields of the same type, that are strongly positively corre-
lated. Although the principles of variational analysis can accommodate strong nonlinearities if
required, it is often numerically convenient to exploit the typically weak nonlinearity of H by
approximating the effects on H(x) of small increments of x, using the linearization H: A

Hdx = dH(x). . - (2.5)

The ‘ﬁrimal’ variational principle in 3DVAR seeks the minimum over x of the penalty
function £;(x) defined by:

2£:1(x) = (x — x)"B~! (x— xp) +(y = Hx) Ry - H(x), (2.6)



which may be justified by minimum-variance arguments or, more generally, by considerations
of Bayesian estimation when nonlinearities become significant (for example, see Lorenc 1986).
The solution; x = x,, then obeys:

B '(x, —x) =H'R (y - H(x)), o (2.7)
and hence, must define an increment of the form, -
x, — xp = BH'T, _' (2.8)

where

f=R Yy — H(x)). | _ (2.9)

The inherent smoothness of the background field errors ¢, and hence that of the covariance B
of these errors, is therefore imprinted on the analysis increments themselves. o

The dimensionality of f (the number of independent data) is typically much smaller than the
dimensionality of x (the number of gridded state values). If we neglect the effects of nonlinearity
(which can be accommodated easily by appropriate refinements) we find that, instead of solving
for x directly, we can instead first solve for the smaller vector f in the 1mphed ‘dual’ variational
principle that minimizes £o(f) defined by: '

2L5(F) =fT(R + HBHT)f — 2f7d, (2.10)

where d is the ‘innovation’: ‘
d=y,— H(xp). (2.11)

This duality is discussed by Courtier (1997), who shows that the primal and dual forms
imply essentially identical condition numbers for the alternative large-scale symmetric-matrix
linear inversion problems they imply when only the most basic preconditioning strategies are
employed in each case. More ingeneous strategies of preconditioning based on data clustering,
as recently proposed by Cohn et al (1998) and Daley and Barker (2000), would seem to favor the
adoption of the dual form, but consideration of some of the nonlinear aspects of the problems
make the more direct estimation of analysis increments via the primal form more attractive.
Regardless of which form of 3DVAR is adopted, given that the sizes of the symmetric ‘system
matrices’ are too large to admit direct solution in either case, one must rely on iterative methods,
~ such as conjugate gradient or quasi-Newton solvers, to converge towards a practical solution.
Then one finds that the most costly part of each iterative step of such a solution algorithm is
the operation of multiplying some grid-space vector v by the covariance matrix B (or at least,
a sequence of operations whose net effect and cost is equivalent to performing this operation).
This effort has to be expended precisely once per iteration whether treating the primal or the
dual form of the problem. Even one matrix-vector multiplication of this form is prohibitively
expensive to perform every iteration if it is computed explicitly with a full matrix having the
dimensionality of the gridded state x.

The difficulty is tackled by progressively reducing an operation of the form Bv into smaller,
less costly factors. In the first step, the multivariate structure of B is broken apart by the
judicious selection of a set of nonstandard analysis variables for which the contributions from



B naturally separate out. For example, a single variable representing the quasi-geostrophically
balanced combination of mass- and rotational wind-fields can be attributed a univariate spatial
covariance for its background errors quite independently of the corresponding spatial covariance
for the residual unbalanced rotational wind component. Meanwhile, the divergent wind field
can be treated independently of either. Further steps in the program of reducing the operator
B might be, next, to carry out a crude separation of a few additive components of the operator
~ on the basis of their characteristic spatial scales. If this can-be done to render the resulting
operator components into Gaussian forms, then, in the absence of anisotropies obliquely oriented
with respect to the grid, the Gaussians themselves may be factored into the three respective
coordinate directions. Finally, along each single dimension, a final computational economy may
be gained by employing a spatially recursive filter, carefully constructed to mimic the required
Gaussian convolution operator, but at a fraction of the still considerable cost of applying directly
the explicit Gaussian convolution operator itself. It is the objective of the following sections
to reveal precisely how such a recursive filter may be fabricated and applied. However, it is
appropriate to reiterate that the virtue of a recursive filter used in this way derives merely
from its inherent computational efficiency, which, owing to the unique factorization properties
of multidimensional Gaussians, can only be exploited in two or three dimensions when the
effective convolution kernels are of approximately Gaussian form. We do not wish to imply
that the Gaussian form is inherently desirable in data assimilation. On the contrary, careful
investigation of the spatial profiles of forecast background error (Thiébaux 1976; Thiébaux et al.
'1986; Hollingsworth and Lonnberg 1986) reveal covariance functions that cannot be reconciled
with the Gaussian shape alone. But, by treating the two- or three-dimensional quasi-Gaussian
filter combination as a relatively cheap ‘building block’, a far larger range of possible profile
shapes becomes accessible, by the superposition of appropriately weighted combinations of
quasi-Gaussians of different sizes and by the application of the negative-Laplacian operator to
such components in order to induce the negatively-correlated side-lobes characteristic of some
components of background error. Thus, the motivating consideration for using recursive filters
in this context is predominantly that of computational efficiency together with the recognition
that more much general forms become available through the exploitation of superposition.

3. HOMOGENEOUS RECURSIVE FILTERING THEORY

(a) Quasi-Gaussian recursive filters in one dimension

Let K/6z? denote the finite difference operator:
K (9)i/02% = — (i1 — 21 + tbir1) /02, (3.1)

approximating the differential operator, —d?/dx?, on a line-grid of uniform spacing dz. The
spectral representation of the operator at wavenumber &k (wavelength 27/k) is

K(k) = (2 sin (%))2 .

Inverting this relationship, we obtain a formula for k? in terms of, K:

4 - 12\ \?
2 __ = .
k, =522 (arcsm ( 5 )) .
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Clearly, the same formula relates operator —d?/dz? to operator K; in fact, the algebraic ma-
nipulations we set forth here can be regarded as an application of the ‘calculus of operators’
(Dahlquist and Bjorck 1974, p. 311). Using the standard expansion:

O .
arcsin(z) = Z viZ® |z < 1 (3.2)
=0 .
where
1 (26 — 1) 1 1 113 1135

=1, (3.3)

TR+ @) 32 524 7246

we may obtain a power expansion for k2622, and thence, the expansions for the term, (k?dz?):

(k?62?) =" b; j(K)7. (3.4)
jzi ,

The coefficients, b; ;, which are all positive and rational, are listed in Table 1 for j <6.

TABLE 1. COEFFICIENTS b; ; FOR QUASI-GAUSSIAN FILTERS UP TO DEGREE SIX

7 j:l _7':2. J=3 7= j:_ ’ j:6
1 1 1 1 1 1 P
12 90 560 3150 ’ 16632
9 1 1 7 41 479
3 240 7560 453600
1 13 695
3 1 1 240 60480
] 31
4 1 3 360
’ 5
5 1 5
6 1

Consider the differential operator, D),

a® & ot d* 1 { o a2\" o
Dpy=1—-——=+—— - +—=|——— 3.5
(n) s Mt T\ T2az) (3:5)
whose spectral repreSéntation is:
S I 1 {a?k2\"
D(n):l-l— 2 +2‘4+E 9
or, with o =a/éz, v
- k2522 ot (K2622\° o (k2522\"
— 2 < hll b
D(n)—l—i-O' ( L >+2! 5 co.t ol 5 . (3.6)
Since, |
.o a’k? '
7}};{)10 Diny = eXP(T)a A (3.7)



the substitution of each power series (3.4) up to degree n for the powers of k? into (3.6) gives
us a way of approximating this exponential functlon in terms of K:

1 (o?\* & 1 (a2\" .
D(n) =1+ Z bl,]K + o (_> Z b2,JKJ +- -y (7) bun K" (3.8)
.7 1 )

Correspondingly, there is a finite difference operator, Dz‘ ) composed of the nth-degree expan-
sion of K implied by this approximation which, followmg a rearrangement of terms, we may

write: v
o2 ba,2 o? ? 9 ” bjn o? 7 n
b1,2 <—2—) + -2—‘ ? K*... .+ Z j—‘ —2— K". (39)

j=1

* Note that, owing to the positivity of all the coefficients b; ;, this operator is positive definite
and therefore possesses a well-defined inverse. Note also that, for o >> 1, the only coefficients
in (3.9) that remain significant are the ‘diagonal’ ones, b; ; = 1, yielding s1mply the truncated
Taylor series for the exponential function of 02K/2. Shortly, we shall examine the practical
impact of the off-diagonal components, b, j > 1, but first we describe the process of extracting
from the above algebraic developments a practical class of smoothing filters. 7
 The reciprocal of the function exp(a?k?/2) in (3.7) is a Gaussian function in k£ and is the-
Fourier transform of a convolution operator (on the line z) whose kernel is also of Gaussian
form. Provided we can find a practical way to invert the operator equation,

* 02
D(n) =1 —+ b171 EK +

for a glven input dlstrlbutlon p, the resulting output, s, will be an approximation to the
convolution of p by the Gaussian function whose spectral transform is the reciprocal of the
right-hand-side of (3.7). The approximation, (D (n)) , to this convolution is what.we refer to
as a ‘quasi-Gaussian filter’. The common centered second-moment of operator D,y and its
approximation, 'Dz‘n), is‘exactly —a?2, so a is a convenient measure of the intrinsic distance scale
of the smoothing filter implied by the inversion of (3.10). A useful fact is that the square of
the intrinsic scale of the composition of sequential smoothing filters is the sum of squares of the
scales of the individual components. Also, as a consequence of the statisticians’ ‘central limit
theorem’ (e.g., Wilks 1995) applied to convolutions in general, the effective convolution-kernel
of such a composition of several identical filter-factors resembles a Gaussian more closely than
does the representative factor. Thus, provided it becomes feasible to invert (3.10), we possess
the means to convolve a gridded input distribution with a smooth quasi-Gaussian kernel, at
least in one dimension. .

As a matrix, Dfn) is banded and, for an infinite domain, symmetric. Conventionally, the
linear inversion of a system such as (3.10) might be effected by employing an LU factorization
(Dahlquist and Bjorck 1974) of 2} ()

DZ‘n) = AB, (3.11)

with lower-triangular band matrix, A and upper-triangular band matrix B, allowing the solution
to proceed as two steps of recursive substitution. On an infinite grid, the same principle pertains,



but with the guaranteed simplification of: (i) a translational symmetry ensuring that every row

of A is identical (allowing for the trivial translation) and every row of B is identical; (ii) ordinary

matrix symmetry by which we can ensure that B is simply the transpose of A. In this case,

the LU decomposition of D?n) is also of the symmetric, or Cholesky type (Dahlguist and Bjorck

1974). : , :
In the two stages of solution,

Aq = p, o (3.12)
Bs = q, (3.13)

the explicit recursions of the back-substitutions are the following basic recursive filters:

. ,
% = Bpit+Y agij, (3.14)
i=1
n
si = Bgi+ Y s, (3.15)
e _ ,

which are conveniently referred to as the ‘advancing’ and ‘backing’ steps respectively since, in
the first, index 4 must be treated in increasing order while, in the second, it must be treated in
decreasing order, in order that the terms on the right are already available at each step. Note
that the correspondences between notations of (3.12), (3.13) and of (3.14), (3.15) are:

Aii=B;; = 1/8, | . (3.16)
Aiij=Biiy; = —oy/B,j€ll,n]. (3.17)

Defining the total ‘substance’ implied by the distribution p to be >°; éz p;, the operator DZ‘n),
and hence its inverse, preserve this quantity. By symmetry, the factor operators, 4 and B must
therefore also preserve substance, implying that:

ﬁ=1—§n:aj. (3.18)
. g=1

The task of distilling the coefficients «; from the parameters defining Dy, , is somewhat
technical and is relegated to Appendix A. Filters may be constructed at different orders, n, and
with or without the refinements implied by the off-diagonal coeflicients, b; ;, for j > i. Forn =1
the filter response comprises back-to-back decreasing exponential functions, which Fig. 1a shows
{dashed curve) in comparison to the Gaussian function (solid curve) of the same width of one
grid unit. Better approximations to the Gaussian are obtained after application of the second-
order filters, as shown in Fig. 1b, and fourth-order filters, shown in Fig. 1c, for the case of the
filter with only the diagonal coeflicients b (short-dashed curves) and with all the b-coeflicients
(long-dashed curves). We see that the advantage of keeping all the coefficients is greater at
higher order, where they make the resulting filter response a significantly better approximation
to the intended Gaussian function. However, the alternative treatments of the b coefficients are
virtually indistinguishable at smoothing scales of a few grid units, as the truncation errors of



the component numerical derivative operators become insignificant in comparison to the error
resulting from the finite truncation of the series for the Gaussian employed in the construction of
the filter operator. The cost of applying the filters with or without the off-diagonal b coefficients
is the same; therefore, we always adopt the more accurate formulation that includes the ofi-
- diagonal coefficients.

We have described the idealized case of operators acting on data extending indefinitely in
both directions. In practice, we are confronted with geometrical constraints, either in the form
of definite lateral boundaries to the domain, or as periodic conditions appropriate to a cyclic
domain. Fortunately, it is possible to generalize the application of the advancing and backing
recursive filters to both of these situations. Appendix B treats the case of lateral boundaries
and shows how the effect of a continuation of the domain to infinity can be simulated by the
imposition of appropriate ‘turning’ conditions at the transition between the advancing and
backing stages. Appendix C treats the case of periodic boundary conditions. In both of these
special cases the main part of the filtering algorithm and the basic filter coefficients employed
are the same as in the case of the infinite domain. By a generalization of the treatment used
in the cyclic case, one may efficiently distribute the recursions across multiple processors of a
massively parallel computer, as we describe in appendix D. '

(b) Quasi-Gaussian filters in two dimensions

Let z and y be horizontal Cartesian coordinates, & and I the associated wavenumber com-
ponents. Then in two dimensions, we can exploit the factoring property of isotropic Gaussians:

2 2 222 2)2
exp (_azp ) = exp (_azk ) exp (—E—2—> , (3.19)

where p= (k?+12)1/2 is the total wavenumber. In terms of basic one-dimensional Gaussian

smoothing filters, D&)} and D((gg), operating in the z and y directions, a two-dimensional
tsotropic filter, G, also of Gaussian form, results from the successive application of the one-
dimensional factors, ’D(Zg and ’D(i))). For example, an input field, x, is smoothed to produce

the output field, v, by the convolution:

P(x1) = / / Go(x1, X2)x(x2)dz2 dys = G4 * X, (3.20)
where - W @)
Ga = Dioo) * Dico)

The crucial significance of the Gaussian form for the one dimensional filters is that this form
is the only shape which, upon combination by convolution in the z and ¥ directions, produces an
isotropic product filter. In order to generalize our filters to alternative shapes, while preserving
two dimensional isotropy, we shall always attempt to base the construction of the more general
filters on the ‘building blocks’ supplied by the quasi-Gaussian products of the approximations,
Dg:c))) and Dggc))), to the true Gaussian smoothers. But we must first establish what is the
minimum order of such a filter that will preserve the isotropy of the product combination, at
least to a degree that ensures that any residual anisotropies are not obtrusively obvious.



Fig. 2 depicts the results obtained by smoothing a delta function placed at the center of
a square grid. Fig. 2a shows the result of a single application of the first-order filter, D(yy, in
the z and y directions. This result is clearly neither smooth nor even approximately isotropic.
Figs. 2b and 2c show the results obtained by using the filters of orders two and four. We see
that the appearance of isotropy is not adequately attained until the order exceeds two, but the
fourth-order filter shown in Fig. 2c seems to provide an excellent approximation to the isotropic
Gaussian. For applications in data assimilation, it is usually worth the cost of applying a filter
of at least fourth-order if the filter is to be applied only once in each of the orthogonal grid
directions. For a roughly equivalent cost, one may also apply the simple first-order filter four
times in succession (but with a scale only a half as large in each instance); the result is shown
in Fig. 2d, but is clearly inferior to the use of the single fourth-order filter.

Very often, the physical variables of interest in an analysis are derivatives of the variables it
is convenient to base the covariance model on. For example, covariances of the steamfunction
or velocity potential (scalars) are often more convenient to handle than the derived covariances
among velocity components at two locations. Since we may wish to employ the results of our
filters as building blocks of such differentiated covariances, it is as well to examine the derivatives
of fields analogous to those of Fig. 2. In order to permit any departures from isotropy to stand
out more clearly, we take the Laplacian of the result of smoothing the delia function. Fig. 3
shows three such results (with a slightly smaller scale than was used in Fig. 2), involving single
applications (in z and y) of Dy,) with n being 2, 4 and 6 in panels (a), (b) and (c). Even more
so than in Fig. 2, we see that it is not until we adopt at least about fourth-order filtering that
we obtain an acceptable degree of isotropy. For reference, the ‘right answer’ obtained using the
Laplacian of the true Gaussian, G, is shown in Fig. 3d.

(¢) Numerical robustness and multigrid refinements

A recognized problem with high-order recursive filters (e.g., Otnes and Enochson, 1972)
is their susceptibility to numerical noise, especially as the filtering scale becomes significantly
larger than the grid scale. A natural remedy, in cases where the grid dimensions permit it, is
to employ a ‘multigrid’ strategy. A general discussion of such methods can be found in Brandt
(1977). Essentially, the field to be smoothed at a certain filtering scale is first transferred (by
adjoint-interpolation from the initial fine grid) to a grid whose coarseness is comparable with,
but. still sufficiently resolves, this smoothness scale. The smoothing is performed by the high-
order recursive filter on the generally somewhat coarser grid, now without risk of numerical
noise, and at a numerical cost that is usually significantly less than the cost of the equivalent
operation applied to the original fine grid. The resulting smooth field is finally interpolated
back to the fine grid. The implied operator representing this combination of steps remains self-
adjoint and, provided the order of accuracy of the interpolations is large enough, no discernable
hint of roughness appears in the resulting smooth output.

The simplest multigrid structure is one in which the spacing in the successive grids doubles.
Then, except for the possible overlaps (which are desirable in the case of bounded domains
in order to preserve the same centered interpolation operators everywhere), each coarse grid
is a subset of its finer predecessor. For cyclic domains, this simplification obviously works
only when the periodic grid dimensions are divisible by powers of two. For bounded domains,
the judicious use of overlaps enables one to adopt the scale-doubling arrangement without
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numerical restrictions on the grid dimensions. Interpolation is assumed to occur only between
adjacent grids of the hierarchy. Interpolation from a coarse grid to the next finer grid in two
dimensions is accomplished by passing through an intermediate stage in which one dimension is
‘fine’ and the other is ‘coarse’. In this way, only one-dimensional interpolation operators need
be considered. Assuming each coarse grid overlaps the next finer grid by a sufficient margin,
all interpolations can be performed using the same standard centered formula. Table 2 lists
the coefficients for mid-point interpolation from a uniform grid at (even) orders of accuracy
between two and twelve. Experience suggests that sixth-order interpolations are adequate for
most purposes. ’

TABLE 2. COEFFICIENTS w; FOR UNIFORM GRID MID-POINT INTERPOLATION
AT ORDERS OF ACCURACY, n, UP TO 12.

n Y YWi/2 YWss2- YWsj2 YWz YWz YWiiyz
2 2 1

4 16 9 -1

6 256 150 —25 3 o

8 2048 1225 —245 49 -5

10 65536 39690 —8820 2268 —405 35

12 524228 320166 - —76230 22869 —5445 847 —63

If a single quasi-Gaussian smoothing is to be performed, then it might seem unduly compli-
“cated and, perhaps, inefficient to perform the interpolations step-wise through the intervening
hierarchy of grid scales when a single grid-to-grid interpolation would suffice. However, for the
purposes of simulating a background covariance operator, the simple Gaussian form is inap-
propriate and the more robust and versatile covariance operators are those synthesized from
several Gaussians drawn from a range of charactersitic scales. In this context of multi-Gaussian
synthesis, the value of the multi-grid approach becomes more strikingly evident, for it not only
avoids the risk of numerical noise, but also enables a broad and numerous spectrum of com-
ponent Gaussian filter building blocks to be combined together in an efficient synthesis that
admits considerable control of the combination’s amplitude, shape and overall scale. We shall
return to a more detailed discussion of this topic in section 5.

4. INHOMOGENEOUS GENERALIZATIONS

In this section we treat cases in which the grid remains orthogonal and smooth in terms of
its resolution, but not necessarily uniform or without curvature. At the same time, we treat the
case in which the filter remains locally isotropic, but whose smoothing scale is permitted to vary
geographically. Polar grids, such as plane polars or global latitude and longitude grids, possess
special rotational symmetries which can be exploited in the case of the spatially homogeneous
* smoothing filters which respect those symmetries. But polar grids also present unique difficulties
involving the polar singularities themselves, which then require special corrective measures to
be applied to the filters. We pay attention to these problems in this section and suggest some
- of the remedies that are possible.
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(@) Inhomogeneities of grids or filter scales

One should not be led to believe that our construction of quasi-Gaussian filters is necessarily
restricted to perfectly uniform cartesian grids. On a smoothly varying nonuniform grid in one
dimension, the tridiagonal discretization of the differential operator d?/dz?, and polynomials
of the discretization by which the requisite powers of d?/dz? are approximated, still lead to
banded matrices that can be rendered symmetric by a similarity transformation with a diagonal
matrix related to the metrical properties of the grid. Also, we can generalize the conditions
of homogeneity of the smoothing scales to incorporate the effects of a scale that can vary
smoothly across the grid, again, without invalidating the property of self-adjointness However,
this additional generalization requires that, in all appearances of the operator, (—(a2/2)d?/dz?),
in the counterpart to the polynomial (3.5) of this operator, a form of the second derivative factor
is substituted which is self-adjoint even when a is a function of z. Of the qualifying possibilities,
the one that is most convenient in practice and which leads to a substance-conserving filter, is
the one most closely identified with the operation of a diffusive process:

da()d
T dz 2 dz

The operator, (4.1), ‘would be appropriate when the grid lines along which z varies are
all parallel but, in a general orthogonal curvilinear grid, this is no longer true. The final
generalization we add in this section is the accommodation of grids with converging or diverging
.grid lines. We do this by including a metric term, 7, whose reciprocal is the density of z-grid
lines so that 7 itself may be thought of as the line or area measure (according to whether the
grid is two- or three-dimensional) of the interface orthogonal to the grid line and attributed
to it in finite difference operations. Using partial derivatives to emphasize the implied multi-
‘dimensionality, the operator we need to generalize (4.1) is:

(4.1)

- ‘ (42)

which is self adjoint in the sense of an inner-product defined:

(s,4) = / s(2)H(z)7(z)dz. (4.3)

Let z; be the main grid coordinates for integers 7 and let the intermediate staggered grid of
points such as z;;1/o be a smooth interpolation from it. Likewise, by smooth 1nterp01at10n we
assume a and 7 to be available at the main and staggered grids. Define

0z = Tyy1/2 — Ti-1/2, 7 (4.4)
0Tipi/2 = Tiv1 — i (4.5)

Recalling that o = a/dz, the simplest consistent discretization of the operator (4.2) is

10 a?(z)0s 1
<———T—‘é‘l£> ~ Yy [Ti—1/2a?—1/2(5Si—1/2)/637i—1/2 - Ti+1/2az2+1/2(63i+1/2)/5$i+1/2]
: 1 2 .

1
9 [Vi—1/20i2_1/2(—3i—1 +8;) + Vz‘+1/20i2+1/2(5i - 3i+1)] ) (4.6)
1 .
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where

Vv, = Ti5.’171;, | (47)

defines the local grid cell measure (area or volume). We can relate this operator to a tridiagonal

matrix, K, that serves to generalize the K of (3.1). A representative row, i, of K, is defined by:
(vo?)i1y :

Kiin = — = (4.8)

Vwo?)i(vo?)ir’

(vo?)iz1ye + (¥0%)ig1y2

Ki; = S, , (4.9)
(VUQ)i+1/2 ’

K. - - , 4.10

Rk V(vo?)i(vo?)iv ( )
in terms of which, the finite difference operator of (4.6) is obtained: ,

| 18 a?(x)0s | 171 |
A 7l IR (P g 4.11
< T R i 2(\/170 aﬁs)i (4.11)

where o and /v are the diagonal matrices formed from the values o; and v/Vi. The components
of the matrix K obey the approximation,

(K1, Ks, Kisp1] = [-1,2, —1] (4.12)

very closely when a, §z and 7 are all smooth and slowly varying in z, tending to these values
in the limiting case of constant a, dz and 7. Having found a consistent self-adjoint, but low-
order. accurate numerical approximation to the appropriate second derivative, the suggested
refinement of accuracy available through the use of the coefficients b, ; is: -

18 a?(z) o 11 = N '
—;%TTBENiﬁa(; bl,jK )0'\/’7 (4'13)

Taking the exponential of this operator, but truncating all the terms comprising matrices of

half-bandwidth exceeding n, we obtaining the sought-for generalization of 'Dz‘n) in (3.9):

. 1 o ; |
. J=1

While the coefficient-finding method of Appendix A is no longer applicable in the general
inhomogeneous case, Cholesky factorization is still possible, since at least the matrix sandwiched
between diagonals, 1//v and /¥ of (4.14) remains symmetric. This factorization provides the
means to construct the associated advancing and backing recursive filters. However, these filters
now have coefficients varying in space and so are slightly more complicated to apply. Also, the
method of setting end conditions described in Appendix B can no longer accurately simulate
the indefinite continuation of the grid beyond a boundary in general, but the imperfections that
result are often barely noticeable in practice.
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In order to control the amplitude of the covariance synthesized from inhomogeneous filters
of the kind we have described we need to estimate, for éach point in the domain, the amplitude
of the result of applying the sequence of basic filters to a unit impulse located at this same
point. The homogeneous case conforms to the Gaussian model. The Gaussian model with
constant scale parameter a for one direction corresponds to diffusion in this direction for ‘time’
t when, '

2Dt = o® (4.15)

and the impulse-response value of the result is just (4w.Dt)~1/2. In more than one dimension, the

diffusivity generalizes to a tensor and the appropriate generalization of the impulse-response,
|4wDt|~1/2 involves-the determinant of D. But inhomogeneity of scale, which we may interpret
as inhomogeneity of the effective ‘diffusivity’ D in the diffusion analogue of our filters, leads
to impulse-response functions which differ slightly from the profile calculated on the basis of
the Gaussian model. An asymptotic analysis of this difference, which is outlined in Appendix
E, provides us with a valuable practical refinement to the Gaussian amplitude approximation.
It emerges from this analysis that, to a good approximation, the impulse-response at a given
point of simulated inhomogeneous diffusion acting for ‘time’ ¢ is the same as the amplitude
obtained by diffusing for duration ¢ with an alternative homogeneous diffusion process whose
constant diffusivity D is a local weighted-average of D. The appropriate weighted average can be
obtained by applying to D the original diffusion process, but for only half the usual ‘time’, t/2,
“and evaluating the result of the smoothed diffusivity field D at the point under consideration.
The refinement is valid to first order in the magnitude of the modulation of D, so it is actually
sufficient (and more practical) to simply smooth the single field of [4wDt|. Note that the
diffusion operation acting for duration t/2 is equivalent to the application of the ‘square-root’
(in the convolution sense) of the total filter. In many practical applications of t